I had it on my long-term to-do list: Understanding how the standard errors that the Stata command ‘reghdfe’ generate differ from the standard errors that various R package for panel fixed effect models generate. Here is what I learned.
Assume that you have some new data that you want to explore. The new CRAN version of the ‘ExPanDaR’ package helps by providing a (customized) R notebook containing all building blocks of an exploratory data analysis with a few clicks. Let me show you how to do this by taking a quick look at country-level CO2 emissions.
Closing down for the year, I finally wrapped up a new ‘ExPanDaR’ version that now allows exploring all sorts of data interactively and generates notebooks containing the analysis on the fly. So here comes my little Christmas present for the wonderful RStats community!
The new version of the ‘ExPanDaR’ package will include the option to export your explorative data analysis to an R Notebook. This Notebook can then be used to extend your analysis. Let me show you how to do this.
Interactive EDA is nice but customized interactive EDA is even nicer. To celebrate the new CRAN version of my ‘ExPanDaR’ package I prepare a customized variant of ‘ExPanD’ to explore the U.S. EPA data on fuel economy
As the year is closing down, why not spend some of the free time to explore your email data using R and the tidyverse? When I learned that Mac OS Mail stores its internal data in a SQLite database file I was hooked. A quick dive in your email archive might uncover some of your old acquaintances. Let’s take a peak.
Exploratory data analysis is important, everybody knows that. With R, it is also easy. Below you will see three lines of code that allow you to interactively explore the Preston Curve, the prominent association of country level real income per capita with life expectancy.